**In Progress**
Goal
The goal of this guide is to help you understand the Fundamental concepts in Statistics.
- First, we will see the underlying (theoretical) idea behind the concept.
- Then we will visualize that concept (at https://app.quantml.org/statistics/ ).
- Then we will use programming language
,
to fill the holes and fully grasp that concept.
Resources
Table for CDF of
\(\mathcal{N}(0,1)=\Phi(x)\)\(\bullet\)Online Calculator to calculate Area under the\(\text{Gaussian Distribution }\mathcal{N}(\mu,\sigma^2)\)
Table of Content
- \(1)\)Introduction
- \(2)\)Weak Law of Large Numbers
- \(3)\)Central Limit Theorem
- \(4)\)Gaussian Distribution
- \(5)\)Modes of Convergence
- Coming Soon
- • Inference
- • Estimation
- • Confidence Intervals
- • Hypothesis testing
- • Statistical modelling
- • Identifiability
- • Bias, Variance and Quadratic Risk
- • Confidence Interval
- • Delta Method
- • Hypothesis Testing
- • Hypothesis testing
- • One Sample Test
- • Two Sample Test
- • \(\text{p-value}\)
- • Statistical Test
- • Statistical Test \((\psi)\)
- • Rejection Region
- • Type \(1\)error of a test\((\psi)\)
- • Type \(2\)error of a test\((\psi)\)
- • Power of a test \((\psi)\)
- • Level
- • Total Variation Distance
- • Kullback-Leibler (KL) Divergence
- • Maximum Likelihood Estimator
- • Covariance Matrices
- • Fisher Information
- • Method of Moments
- • M-estimation
- • The Chi-Squared Distribution
- • Student's T Distribution
- • The Student's T Test (T Test)
- • Wald's Test
- • Likelihood Ratio Test
- • Goodness of Fit Tests
- • Kolmogorov-Smirnov Test
- • Kolmogorov-Lilliefors Test
- • Quantile-Quantile (QQ) Plots
- • Introduction to the Bayesian Framework
- • Jeffreys Prior
- • Linear/Ridge Regression
- • Generalized Linear Models; Exponential Families
- • Introduction to GLM
- • Link Function
- • Link Function
- • Canonical Link Function
- • GLM Statistical Model
Topics to be covered
The above list can be expanded i.e. more topics can be added.
**In Progress**