Similar Matrices
Say we have two\(n\times n\)
square matrices \(A\)
and \(B\)
.\(A\)
and \(B\)
are similar matrices if there exists some \(M\)
such that,\[ \begin{matrix} B=M^{-1}AM \end{matrix} \]
Explanation:\(\Lambda\)and\(A\)are similar matrices.
Say we have a\(n\times n\)matrix\(A\),\(\vec{x}_1,\vec{x}_2,\cdots,\vec{x}_n\)are eigenvectors of\(A\), and\(\lambda_1, \lambda_2, \cdots, \lambda_n\)are the eigenvalues of\(A\).\(S=\begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ \vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{n} \\ \vdots & \vdots & \cdots & \vdots \\ \end{bmatrix},\)\(\Lambda=\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \\ \end{bmatrix}\)
We have seen HERE that,\[ \Lambda =S^{-1}AS\]So,\(\Lambda\)and\(A\)are similar matrices.\(A\)has a family of similar matrices and\(\Lambda\)is the best(simplest) similar matrix among them.
Let's take an example,
Say
\(A= \begin{bmatrix} 2&1\\ 1&2 \end{bmatrix}\)
Eigenvalues of
\(A\)
are \(3,1\)
so \(\Lambda= \begin{bmatrix} 3&0\\ 0&1 \end{bmatrix}\)
So
\(\begin{bmatrix} 2&1\\ 1&2 \end{bmatrix}\)
and \(\begin{bmatrix} 3&0\\ 0&1 \end{bmatrix}\)
are similar matrices.Let's get another similar matrix using
\(B=M^{-1}AM\)
.Let's choose a random full rank(invertible) matrix
\(M\)
Say \(M= \begin{bmatrix} 1&4\\ 0&1 \end{bmatrix}\)
So
\(\underbrace{\begin{bmatrix} 1&-4\\ 0&1 \end{bmatrix}}_{M^{-1}} \underbrace{\begin{bmatrix} 2&1\\ 1&2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} 1&4\\ 0&1 \end{bmatrix}}_{M} = \underbrace{\begin{bmatrix} -2&-15\\ 1&6 \end{bmatrix}}_{B}\)
So
\(\begin{bmatrix} 2&1\\ 1&2 \end{bmatrix}\)
and \(\begin{bmatrix} -2&-15\\ 1&6 \end{bmatrix}\)
are similar matrices.Notice that here also eigenvalues are
\(3,1\)
Here we can see that
\(\underbrace{\begin{bmatrix} 2&1\\ 1&2 \end{bmatrix}}_{A},\quad\)
\(\underbrace{\begin{bmatrix} 3&0\\ 0&1 \end{bmatrix}}_{\Lambda},\quad\)
and \(\underbrace{\begin{bmatrix} -2&-15\\ 1&6 \end{bmatrix}}_{B}\)
have same eigenvalues \(3,1\)
we can verify it by \(\text{trace}(\cdot) = 4\)
and \(\text{det}(\cdot) = 3\)
Similar matrices have same eigenvaluesExplanation:
Say we have a\(n\times n\)matrices\(A\),\(\vec{x}_1,\vec{x}_2,\cdots,\vec{x}_n\)are eigenvectors of\(A\), and\(\lambda_1, \lambda_2, \cdots, \lambda_n\)are the eigenvalues of\(A\).
So\(A\vec{x}_i=\lambda_i \vec{x}\)
(\(MM^{-1}=\mathcal{I}_n\))\(A\mathcal{I}_n\vec{x}_i=\lambda_i \vec{x}\)\(AMM^{-1}\vec{x}_i=\lambda_i \vec{x}\)\(\underbrace{(M^{-1}AM)}_{B} M^{-1}\vec{x}_i=\lambda_i M^{-1}\vec{x}\)\(B \underbrace{M^{-1}\vec{x}_i}_{\text{(say) }\vec{v}}=\lambda_i \underbrace{M^{-1}\vec{x}_i}_{\text{(say) }\vec{v}}\)\(M^{-1}\)is just a transformation of\(\vec{x}\)from\(\mathbb{R}^n\)to\(\mathbb{R}^n\)
So\(M^{-1}\vec{x}\)is a vector in\(\mathbb{R}^n\)\(B \vec{v}_i=\lambda_i \vec{v}\)
So now we can see that eigenvalues of\(B=M^{-1}AM\)is same as eigenvalues of\(A\)
And\((\)eigenvectors of\(B)=M^{-1}\)(eigenvectors of\(A\))
What if we have same eigenvalues ?
If we don't have all eigenvalues to be different then, there might not be\(n\)independent eigenvectors, so the matrix might not be diagonalizable.
Example
Say\(A=\begin{bmatrix} 4&0\\ 0&4 \end{bmatrix}\)here eigenvalues are\(4,4\)and every vector is an eigenvector because all vectors are only scaled by\(4\)\(A\)doesn't change the direction
Is there any matrices similar to\(A\)?
Say that matrix\(B\)is similar to\(A\).\(B=M^{-1}AM\)\(B=M^{-1}\begin{bmatrix} 4&0\\ 0&4 \end{bmatrix}M\)\(B=4M^{-1}\begin{bmatrix} 1&0\\ 0&1 \end{bmatrix}M\)\(B=4M^{-1}\mathcal{I}M\)\(B=4M^{-1}M\)\(B=4\mathcal{I}\)\(B=\begin{bmatrix} 4&0\\ 0&4 \end{bmatrix}\)
So similar matrix for\(A\)is only\(A\)itself.
It is not necessary that if our eigenvalues repeat then we can't have similar matrices.
Example
Say\(A=\begin{bmatrix} 4&1\\ 0&4 \end{bmatrix}\)here eigenvalues are\(4,4\)
It has a bunch of similar matrices, like\(\begin{bmatrix} 4&1\\ 0&4 \end{bmatrix},\quad\)\(\begin{bmatrix} 4&0\\ 7&4 \end{bmatrix},\quad\)\(\begin{bmatrix} 7&-2\\ 1&2 \end{bmatrix},\cdots\)these all are similar matrices.