Properties of Positive Definite Matrices
Say we have a\(n\times n\)
matrix \(A\)
then \(A\)
is Positive Definite Matrix if any of the below condition is satisfies,\(1.\)All the eigenvalues are positive.
\(\quad\lambda_1\gt 0,\lambda_2\gt 0,\cdots,\lambda_n\gt 0\)
\(2.\)All leading determinants are positive.
For Example:
Say we have a\(3\times 3\)matrix\(A\)\[A=\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{bmatrix}\]\(A\)is a Positive Definite Matrix if,\(\text{det}\left( \begin{bmatrix} a_{11} \end{bmatrix} \right)\gt 0;\quad\)\(\text{det}\left( \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} \right)\gt 0;\quad\)\(\text{det}\left( \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{bmatrix} \right)\gt 0\)
\(3.\)All pivots are positive.
\(4.\)A\(n\times n\)matrix say\(A\)is Positive Definite Matrix, if
\[ \begin{matrix} \vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} \end{matrix} \]
More interesting properties of positive definite matrices
\(n\times n\)
matrix \(A\)
is a positive definite matrix then \(A^{-1}\)
is also positive definite matrixHere we can use property number\(1\)"A matrix is positive definite matrix if all the eigenvalues are positive."
Say that the eigenvalues of\(A\)are\(\lambda_1,\lambda_2,\cdots,\lambda_n\)
Then the eigenvalues of\(A^{-1}\)are\(1/\lambda_1,1/\lambda_2,\cdots,1/\lambda_n\)\(A\)is a positive definite matrix, it's eigenvalues are positive, so\(\lambda_1\gt 0,\lambda_2\gt 0,\cdots,\lambda_n\gt 0\)\(\Rightarrow \quad1/\lambda_1\gt 0,\quad1/\lambda_2\gt 0,\cdots,1/\lambda_n\gt 0\)
So by property\(1\)we can say that "\(A^{-1}\)is a Positive Definite Matrix"
\(n\times n\)
positive definite matrix \(A\)
and \(B\)
then \(A+B\)
is also positive definite matrixHere we can use property number\(5\)"A matrix (say A) is positive definite matrix if\(\vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)"
We know that\(A\)is positive definite matrix so\(\vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)
We know that\(B\)is positive definite matrix so\(\vec{x}^TB\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)
For\(A+B\)to be positive definite matrix we need\(\vec{x}^T(A+B)\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)\(\vec{x}^T(A+B)\vec{x}\)=\(\underbrace{\vec{x}^TA\vec{x}}_{(\gt 0;\forall x\in\mathbb{R}^n \char`\\ \vec{0})} + \underbrace{\vec{x}^TB\vec{x}}_{(\gt 0;\forall x\in\mathbb{R}^n \char`\\ \vec{0})}\)\(\Rightarrow \vec{x}^T(A+B)\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)
So by property\(5\)we can say that "\(A + B\)is a Positive Definite Matrix"
\(m\times n\)
matrix \(A\)
and \(\text{Rank}(A)=n\)
then \(A^TA\)
is a positive definite matrixFor\(A^TA\)to be a positive definite matrix we need,\(\vec{x}^T(A^TA)\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)\(\vec{x}^T(A^TA)\vec{x}=(\vec{x}^TA^T)(A\vec{x})\)\(\Rightarrow \vec{x}^T(A^TA)\vec{x}=(A\vec{x})^T(A\vec{x})\)
Here\(A\vec{x}\)is a vector in\(\mathbb{R}^n\), so\((A\vec{x})^T(A\vec{x})=\|A\vec{x}\|^2\)\(\|A\vec{x}\|^2\)is the sum of squares so it can't be negative\(\|A\vec{x}\|^2\geq 0\)and\(\|A\vec{x}\|^2\)is\(0\)only for\(\vec{x}=\vec{0}\)
because\(\text{Rank}(A)=n\)so columns are independent, so\(A\vec{x}=\vec{0}\)if\(\vec{x}=\vec{0}\)so it's Null space have only\(\vec{0}\)\(\Rightarrow \vec{x}^T(A^TA)\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)
So we can say that "\(A^TA\)is a Positive Definite Matrix"
Example
\(1\)
:Say
\(A=\begin{bmatrix} 2&6\\6&19 \end{bmatrix}\)
check if \(A\)
is Positive Definite Matrix or not, using properties described above.Let's try using the
\(4^{th}\)
property and see if \(\vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)
Say
\(\vec{x}=\begin{bmatrix} x_1\\x_2 \end{bmatrix}\)
\(\vec{x}^TA\vec{x}= \begin{bmatrix} x_1&x_2 \end{bmatrix} \begin{bmatrix} 2&6\\6&19 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} \)
\(\vec{x}^TA\vec{x}=2x_1^2+12x_1x_2+19x^2\)
Now we want to know that is
\(2x_1^2+12x_1x_2+19x^2\gt 0\)
Now let's use Calculus.
Our function is\(f(x_1,x_2)=2x_1^2+12x_1x_2+19x^2\)
Let's find the critical points,First we take derivative w.r.t. \(x_1\).\[\begin{matrix} \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=& \displaystyle \frac{\partial (2x_1^2+12x_1x_2+19x^2)}{\partial x_1} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=&\displaystyle 4x_1+12x_2 \end{matrix} \]Now equate\(\displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=0\)\[ \begin{matrix} 4x_1+12x_2=0 \end{matrix} \quad\tag{\color{red}{1}} \]Now we take derivative w.r.t. \(x_2\).\[\begin{matrix} \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_2}=& \displaystyle \frac{\partial (2x_1^2+12x_1x_2+19x^2)}{\partial x_2} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_2}=&\displaystyle 12x_1 + 38x_2 \end{matrix} \]Now equate\(\displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=0\)\[ \begin{matrix} 12x_1 + 38x_2=0 \end{matrix} \quad\tag{\color{red}{2}} \]\(x_1=0\)and\(x_2=0\)satisfies this system of equations\((1)\text{ and }(2)\).
Now we got a point\((x_1,x_2)=(0,0)\)but we don't know that, Is it minimum, maximum or saddle point.
To check that, Is it minimum, maximum or saddle point. We need\(2^{nd}\)derivative test \(\frac{\partial^2 f(x_1,x_2)}{\partial x_1^2}\)\[\begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2}=& \displaystyle \frac{\partial (4x_1+12x_2)}{\partial x_1} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=&\displaystyle 4 \end{matrix} \] \(\frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}\)\[\begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}=& \displaystyle \frac{\partial (12x_1 + 38x_2)}{\partial x_2} \\ \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}=&\displaystyle 38 \end{matrix} \] \(\frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}\)\[\begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}=& \displaystyle \frac{\partial (4x_1+12x_2)}{\partial x_2} \\ \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}=&\displaystyle 12 \end{matrix} \]
(Recommended reading)
Now we have our Hessian matrix (say\(H\))\[Hf(x_1,x_2)=\begin{bmatrix} \displaystyle \frac{\partial f}{\partial x_1^2 } & \displaystyle \frac{\partial f}{\partial x_1x_2}\\ \displaystyle \frac{\partial f}{\partial x_2x_1} & \displaystyle \frac{\partial f}{\partial x_2^2} \end{bmatrix}\]\(Hf(x_1,x_2)=\begin{bmatrix} 4&12\\ 12&38 \end{bmatrix}\)\(\text{det}(Hf(x_1,x_2))\gt 0\)so it rules out the possibility of being a saddle point, so\(f(x_1,x_2)\)either have a maximum or a minimum.
And because\(\displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2}\gt 0\)so\(f(x_1,x_2)\)have a minimum values at\((0,0)\)and that minimum value is\(0\)
So we had seen that the minimum value of
\(f(x_1,x_2)=2x_1^2+12x_1x_2+19x^2\)
is \(0\)
\(\vec{x}^TA\vec{x}\gt 0\)
except at \(\vec{x}=\vec{0}\)
, this means that \(A\)
is a Positive Definite MatrixExample
\(2\)
:Say
\(A=\begin{bmatrix} 2&6\\6&7 \end{bmatrix}\)
check if \(A\)
is Positive Definite Matrix or not, using properties described above.Let's try using the
\(4^{th}\)
property and see if \(\vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)
Say
\(\vec{x}=\begin{bmatrix} x_1\\x_2 \end{bmatrix}\)
\(\vec{x}^TA\vec{x}= \begin{bmatrix} x_1&x_2 \end{bmatrix} \begin{bmatrix} 2&6\\6&7 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} \)
\(\vec{x}^TA\vec{x}=2x_1^2+12x_1x_2+7x^2\)
Now we want to know that is
\(2x_1^2+12x_1x_2+7x^2\gt 0\)
Now let's use Calculus.
Our function is\(f(x_1,x_2)=2x_1^2+12x_1x_2+7x^2\)
Let's find the critical points,First we take derivative w.r.t. \(x_1\).\[\begin{matrix} \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=& \displaystyle \frac{\partial (2x_1^2+12x_1x_2+7x^2)}{\partial x_1} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=&\displaystyle 4x_1+12x_2 \end{matrix} \]Now equate\(\displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=0\)\[ \begin{matrix} 4x_1+12x_2=0 \end{matrix} \quad\tag{\color{red}{1}} \]Now we take derivative w.r.t. \(x_2\).\[\begin{matrix} \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_2}=& \displaystyle \frac{\partial (2x_1^2+12x_1x_2+7x^2)}{\partial x_2} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_2}=&\displaystyle 12x_1 + 14x_2 \end{matrix} \]Now equate\(\displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=0\)\[ \begin{matrix} 12x_1 + 14x_2=0 \end{matrix} \quad\tag{\color{red}{2}} \]\(x_1=0\)and\(x_2=0\)satisfies this system of equations\((1)\text{ and }(2)\).
Now we got a point\((x_1,x_2)=(0,0)\)but we don't know that, Is it minimum, maximum or saddle point.
To check that, Is it minimum, maximum or saddle point. We need\(2^{nd}\)derivative test \(\frac{\partial^2 f(x_1,x_2)}{\partial x_1^2}\)\[\begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2}=& \displaystyle \frac{\partial (4x_1+12x_2)}{\partial x_1} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=&\displaystyle 4 \end{matrix} \] \(\frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}\)\[\begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}=& \displaystyle \frac{\partial (12x_1 + 14x_2)}{\partial x_2} \\ \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}=&\displaystyle 14 \end{matrix} \] \(\frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}\)\[\begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}=& \displaystyle \frac{\partial (4x_1+12x_2)}{\partial x_2} \\ \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}=&\displaystyle 12 \end{matrix} \]
(Recommended reading)
Now we have our Hessian matrix (say\(H\))\[Hf(x_1,x_2)=\begin{bmatrix} \displaystyle \frac{\partial f}{\partial x_1^2 } & \displaystyle \frac{\partial f}{\partial x_1x_2}\\ \displaystyle \frac{\partial f}{\partial x_2x_1} & \displaystyle \frac{\partial f}{\partial x_2^2} \end{bmatrix}\]\(Hf(x_1,x_2)=\begin{bmatrix} 4&12\\ 12&14 \end{bmatrix}\)\(\text{det}(Hf(x_1,x_2))\lt 0\)so\((0,0)\)is the saddle point and\(f(0,0)=0\).
So we had seen that
\(f(x_1,x_2)=2x_1^2+12x_1x_2+19x^2\)
has neither maximum nor minimum point.\((0,0)\)
is a saddle point of \(f(x_1,x_2)\)
and \(f(0,0)=0\)
So
\(\vec{x}^TA\vec{x}\ngtr 0 ;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0}\)
, this means that \(A\)
is a not a Positive Definite Matrix