Previously we saw how to get echelon form, pivot/free column vectors of a matrix say
\(A\)
.Now let's find
\(\vec{x}\)
that solves \(A\vec{x}=\vec{0}\)
Solve \(A\vec{x}=0\)
(say) \(A=\begin{bmatrix} \fbox{1} & 2 & 2 & 2\\ 0 & 0 & \fbox{2} & 4\\ 0 & 0 & 0 & 0\\ \end{bmatrix}\)
Note that we can get free columns by a linear combination of pivot columns.
So we are free to scale our free columns.
So consider
\(A'=\begin{bmatrix} \fbox{1} & \lambda_1*2 & 2 & \lambda_2*2\\ 0 & \lambda_1*0 & \fbox{2} & \lambda_2*4\\ 0 & \lambda_1*0 & 0 & \lambda_2*0\\ \end{bmatrix}\)
and \(\lambda_i\in\mathbb{R}\ \forall i=\{1,2\}\)
Because free columns are the linear combination of pivot columns, we can say that the Null space we get bySo now we will find solution for\(A\vec{x}=\vec{0}\)is the same Null space we get by\(A'\vec{x}=\vec{0}\)
\(A'\vec{x}=\vec{0}\)
\(A'\vec{x}= \begin{bmatrix} \fbox{1} & \lambda_1*2 & 2 & \lambda_2*2\\ 0 & \lambda_1*0 & \fbox{2} & \lambda_2*4\\ 0 & \lambda_1*0 & 0 & \lambda_2*0\\ \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3\\x_4\\ \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\ \end{bmatrix}\)
Let's see
\(2\)
approaches to achieve it.\(\text{Approach } 1\)
So we have system of equation:\(\begin{matrix} x_1 & + & 2\lambda_1x_2 & + & 2x_3 & + & 2\lambda_2x_4 & = & 0 \\ 0 & + & 0 & + & 2x_3 & + & 4\lambda_2x_4 & = & 0 \\ 0 & + & 0 & + & 0 & + & 0 & = & 0 \\ \end{matrix} \)
We are free to choose\(\lambda_1\)and\(\lambda_2\)so let\(\lambda_1=\frac{1}{x_2}\),\(\lambda_2=0\)
Then our system of equation becomes:\(\begin{matrix} x_1 & + & 2 & + & 2x_3 & + & 0 & = & 0 \\ 0 & + & 0 & + & 2x_3 & + & 0 & = & 0 \\ 0 & + & 0 & + & 0 & + & 0 & = & 0 \\ \end{matrix} \)\(\Rightarrow x= \begin{bmatrix} -2\\1\\0\\0\\ \end{bmatrix}\)
Now let's set\(\lambda_1,\lambda_2\)some different value to get\(x_2,x_4\)
let\(\lambda_1=0\),\(\lambda_2=\frac{1}{x_4}\)
So we have system of equation:\(\begin{matrix} x_1 & + & 0 & + & 2x_3 & + & 2 & = & 0 \\ 0 & + & 0 & + & 2x_3 & + & 4 & = & 0 \\ 0 & + & 0 & + & 0 & + & 0 & = & 0 \\ \end{matrix} \)\(\Rightarrow x= \begin{bmatrix} 2\\0\\-2\\1\\ \end{bmatrix}\)
\(\text{Approach } 2\)
\(A'\vec{x}= \begin{bmatrix} \fbox{1} & \lambda_1*2 & 2 & \lambda_2*2\\ 0 & \lambda_1*0 & \fbox{2} & \lambda_2*4\\ 0 & \lambda_1*0 & 0 & \lambda_2*0\\ \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3\\x_4\\ \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\ \end{bmatrix} \)
We can write it as.\(A'\vec{x}= \begin{bmatrix} \fbox{1} & 2 & 2 & 2\\ 0 & 0 & \fbox{2} & 4\\ 0 & 0 & 0 & 0\\ \end{bmatrix} \begin{bmatrix} x_1\\ \lambda_1*x_2\\x_3\\ \lambda_2*x_4\\ \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\ \end{bmatrix} \)
We are free to choose\(\lambda_1\)and\(\lambda_2\)so let\(\lambda_1=\frac{1}{x_2}\),\(\lambda_2=0\)
By solving it we get\(\Rightarrow x= \begin{bmatrix} -2\\1\\0\\0\\ \end{bmatrix}\)
By choosing\(\lambda_1=0\),\(\lambda_2=\frac{1}{x_4}\)
We get\(\Rightarrow x= \begin{bmatrix} 2\\0\\-2\\1\\ \end{bmatrix}\)
So we have two special solution.
They are special solution because we crafted those solution in such a way that, in one solution we didn't consider free vectorWe can get all the possible\(c_4\)but consider\(c_2\), and in another solution we didn't consider\(c_2\)but consider\(c_4\).
\(\vec{x}\)
that solves \(A'\vec{x}=0\)
by taking linear combinations of those possible solutions.So
\(x=\alpha \begin{bmatrix} -2\\1\\0\\0\\ \end{bmatrix} + \beta \begin{bmatrix} 2\\0\\-2\\1\\ \end{bmatrix};\quad\)
\(\alpha,\beta\in\mathbb{R}\)
Now we got the Null Space of matrix
\(A\)
it's a plane passing through \(\begin{bmatrix} -2\\1\\0\\0\\ \end{bmatrix}\)
and \(\begin{bmatrix} 2\\0\\-2\\1\\ \end{bmatrix}\)
Null Space is the linear combination of all special solutions.
But how many special solutions are there?
Say there are\(k\)
dependent column vectors in our matrix \(A\)
, then as we discussed we craft these special solution such that we consider one dependent vector at a time.So # special solution = # dependent column vector
remember Rank(A) = # pivot columns
Say that shape of our matrix is
\(m\times n\)
, so we have \(n\)
column vectors in \(\mathbb{R}^m\)
, and say Rank of the matrix is \(r\)
, then # special solution = # dependent column vector =Then the Null space of\(n-r\)
\(A\)
is linear combinations of these \(n-r\)
special solution.For a matrix\(A\in\mathbb{R}^{m\times n}\)with\(\text{Rank}(A)=r\), Null Space is a vector space in\(\mathbb{R}^{n-r}\)