Null space
We discussed column space of a matrix\(A\)
as a vector space of linear combination of all of it's column vectors.Null space is completely different thing.
For a matrix say\(A\)the Null space is the space of all\(\vec{x}\)that solves\(A\vec{x}=\vec{0}\)
Example in \(\mathbb{R}^4\)
Consider a matrix \(A=\begin{bmatrix} 1 & 1 & 2\\ 2 & 4 & 6\\ 3 & 6 & 9\\ 4 & 8 & 12\\ \end{bmatrix}\)
Null space for
\(A\)
is space of all the \(\vec{x} = \begin{bmatrix} x_1\\x_2\\x_3\\ \end{bmatrix}\)
that solves \(A\vec{x} = \vec{0}\)
\(Ax= \begin{bmatrix} 1 & 1 & 2\\ 2 & 4 & 6\\ 3 & 6 & 9\\ 4 & 8 & 12\\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \end{bmatrix}\)
So you can see our column space is
\(\mathbb{R}^4\)
and the space we desire(Null space) is a subspace of \(\mathbb{R}^3\)
.What is the obvious value of \(\vec{x}\) that solves \(A\vec{x}=0\)?
- \(\vec{x}=0\)
\(\vec{x}\)
that solves \(A\vec{x}=0\)
?\(\vec{x}=\begin{bmatrix} -1 \\ -1 \\ 1 \\ \end{bmatrix}\)
solves \(A\vec{x}=0\)
,and
\(\vec{x}=\begin{bmatrix} -2 \\ -2 \\ 2 \\ \end{bmatrix}\)
, \(\vec{x}=\begin{bmatrix} -3 \\ -3 \\ 3 \\ \end{bmatrix}\)
, \(\vec{x}=\begin{bmatrix} -4 \\ -4 \\ 4 \\ \end{bmatrix},...\)
also solves \(A\vec{x}=0\)
.We can summarize it as,
\(\vec{x}=a\begin{bmatrix} -1 \\ -1 \\ 1 \\ \end{bmatrix};\quad a\in\mathbb{R}\)
solves \(A\vec{x}=0\)
.What is this form (
\(a\vec{v}\)
) it's a line, so Null space of \(A\)
is a line in \(\mathbb{R}^3\)
.How can we assure that the space we get by
\(A\vec{x}=0\)
is a vector space?We need to show:
\(1.\)Sum of two vectors in Null Space remains inside the null space.
\(2.\)If we multiply a vector of Null space the resultant vector remains in that subspace
- Say we have two vectors \(\vec{v}\)and\(\vec{w}\)in the Null space.
So\(A\vec{v}=\vec{0}\)and\(A\vec{w}=\vec{0}\)\(\Rightarrow A\vec{v} + A\vec{w}=\vec{0}\)\(\Rightarrow A(\vec{v} + \vec{w})=\vec{0}\)
so\(\vec{v}+\vec{w}\)is inside the Null space. - Say we have a vectors \(\vec{v}\)in the Null space.
So\(A\vec{v}=\vec{0}\)
Say\(\vec{w}=c\vec{v};\quad c\in\mathbb{R}\)\(A\vec{w}=A(c\vec{v})=cA\vec{v}=c\vec{0}=\vec{0};\quad\{\text{because }A\vec{v}=\vec{0}\)
So\(\vec{w}\)is also in Null space.