Menu
QuantML.orgQuantML.org
  • Linear Algebra
  • Matrix Space
  • Dim./Basis
  • Subspaces Ops.
  • Examples

    Operation on subspaces

    Say
    \(\mathcal{S}\)
    denotes the space of all
    \(3\times 3\)
    symmetric matrices.
    Say
    \(\mathcal{U}\)
    denotes the space of all
    \(3\times 3\)
    lower triangular matrices.

  • \(\mathcal{S}\cap\mathcal{U}\)
  • What about all
    \(3\times 3\)
    matrices who are lower triangular AND symmetric.
    We are asking for space contain by both
    \(\mathcal{U}\)
    AND
    \(\mathcal{S}\)
    , OR say what is the space of
    \(\mathcal{S}\cap\mathcal{U}\)
    .
    And it's all
    \(3\times 3\)
    Diagonal matrices.
    And what is the dimension of all
    \(3\times 3\)
    Diagonal matrices.
    Space of all
    \(3\times 3\)
    diagonal matrices is a subspace of all
    \(3\times 3\)
    matrices.
    It has
    \(3\)
    independent entities for a
    \(3\times 3\)
    matrix.
    So it's dimension is
    \(3\)
    .

  • \(\mathcal{S}\cup\mathcal{U}\)
  • What about matrices who are lower triangular OR symmetric.
    We are asking for space contain by both
    \(\mathcal{U}\)
    OR
    \(\mathcal{S}\)
    ,
    Or say what is the space of
    \(\mathcal{S}\cup\mathcal{U}\)
    .
    But all
    \(3\times 3\)
    lower triangular OR symmetric matrices do not form a subspace of all
    \(3\times 3\)
    matrices.

    But Why?
    Let's say
    \(\mathcal{Q}=\mathcal{S}\cup\mathcal{U}\)

    Consider two matrices,
    (symmetric)
    \(A= \begin{bmatrix} \color{red}{1} & \color{red}{1} & 0 \\ \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)
    and (lower triangular)
    \(B= \begin{bmatrix} 0 & 0 & 0 \\ \color{red}{-1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)

    \(A\in\mathcal{Q}\)
    and
    \(B\in\mathcal{Q}\)
    so for
    \(\mathcal{Q}\)
    to be a vector space, linear combination of
    \(A\)
    and
    \(B\)
    must
    \(\in\mathcal{Q}\)
    .
    \(A+B= \begin{bmatrix} \color{red}{1} & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)

    And
    \(A+B\)
    is neither lower triangular and nor symmetric.
    So
    \(A+B\notin \mathcal{Q}\)
    .
    So
    \(\mathcal{Q}\)
    is not a vector space.

  • \(\mathcal{S} + \mathcal{U}\)
  • Here we took any matrix in
    \(\mathcal{S}\)
    (say
    \(A\)
    ) and any matrix in
    \(\mathcal{U}\)
    (say
    \(B\)
    ), and add them.
    You can say it's some sort to linear combinations of space
    \(\mathcal{S}\)
    and space
    \(\mathcal{U}\)
    .
    Say you have a matrix
    \(A\in\mathcal{S}\)
    and a matrix
    \(B\in\mathcal{U}\)
    .
  • If
    \(A\in\mathcal{S}\Rightarrow \alpha\cdot A\in \mathcal{S}\)
    because
    \(\mathcal{S}\)
    is a vector space
  • If
    \(B\in\mathcal{U}\Rightarrow \beta\cdot B\in \mathcal{U}\)
    because
    \(\mathcal{U}\)
    is a vector space
  • And
    \(\alpha\in\mathbb{R}\)
    and
    \(\beta\in\mathbb{R}\)

    And we are looking at
    \(\alpha\cdot A + \beta \cdot B;\quad\)
    \(\forall A\in\mathcal{S}\)
    and
    \(\forall B\in\mathcal{U}\)
    .
    And it's a linear combinations in between elements of
    \(\mathcal{S}\)
    and
    \(\mathcal{U}\)
    .
    \(A\in\mathcal{S}\)
    and
    \(B\in\mathcal{U}\)
    and we are looking for
    \(A+B\)
    .
    \[ \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} 2\mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}}+ \mathbb{R} & 2\mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}}+ \mathbb{R} & \color{green}{\mathbb{R}}+ \mathbb{R} & 2\mathbb{R} \\ \end{bmatrix} \]
    equivalently,
    \[ \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \mathbb{R} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
    now there is no boundation so,
    \[ \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
    Here we have
    \(9\)
    independent entities for a
    \(3\times 3\)
    matrix.
    So it has
    \(9\)
    Basis and
    \(9\)
    Dimensions.
    We can also see it by a beautiful formula.
    \( \text{dim}(\mathcal{S}) + \text{dim}(\mathcal{U}) = \text{dim}(\mathcal{S}\cap\mathcal{U}) + \text{dim}(\mathcal{S} + \mathcal{U})\)
    (That is
    \(6 + 6 = 3 + 9\)
    )