Operation on subspaces
Say\(\mathcal{S}\)
denotes the space of all \(3\times 3\)
symmetric matrices.Say
\(\mathcal{U}\)
denotes the space of all \(3\times 3\)
lower triangular matrices.\(\mathcal{S}\cap\mathcal{U}\)
\(3\times 3\)
matrices who are lower triangular AND symmetric.We are asking for space contain by both
\(\mathcal{U}\)
AND \(\mathcal{S}\)
, OR say what is the space of \(\mathcal{S}\cap\mathcal{U}\)
.And it's all
\(3\times 3\)
Diagonal matrices.And what is the dimension of all
\(3\times 3\)
Diagonal matrices.Space of all\(3\times 3\)diagonal matrices is a subspace of all\(3\times 3\)matrices.
It has\(3\)independent entities for a\(3\times 3\)matrix.
So it's dimension is\(3\).
\(\mathcal{S}\cup\mathcal{U}\)
We are asking for space contain by both
\(\mathcal{U}\)
OR \(\mathcal{S}\)
,Or say what is the space of
\(\mathcal{S}\cup\mathcal{U}\)
.But all\(3\times 3\)lower triangular OR symmetric matrices do not form a subspace of all\(3\times 3\)matrices.
But Why?
Let's say\(\mathcal{Q}=\mathcal{S}\cup\mathcal{U}\)
Consider two matrices,
(symmetric)\(A= \begin{bmatrix} \color{red}{1} & \color{red}{1} & 0 \\ \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)and (lower triangular)\(B= \begin{bmatrix} 0 & 0 & 0 \\ \color{red}{-1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)\(A\in\mathcal{Q}\)and\(B\in\mathcal{Q}\)so for\(\mathcal{Q}\)to be a vector space, linear combination of\(A\)and\(B\)must\(\in\mathcal{Q}\).\(A+B= \begin{bmatrix} \color{red}{1} & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)
And\(A+B\)is neither lower triangular and nor symmetric.
So\(A+B\notin \mathcal{Q}\).
So\(\mathcal{Q}\)is not a vector space.
\(\mathcal{S} + \mathcal{U}\)
\(\mathcal{S}\)
(say \(A\)
) and any matrix in \(\mathcal{U}\)
(say\(B\)
), and add them.You can say it's some sort to linear combinations of space\(\mathcal{S}\)and space\(\mathcal{U}\).
Say you have a matrix\(A\in\mathcal{S}\)and a matrix\(B\in\mathcal{U}\).If \(A\in\mathcal{S}\Rightarrow \alpha\cdot A\in \mathcal{S}\)because\(\mathcal{S}\)is a vector spaceIf And\(B\in\mathcal{U}\Rightarrow \beta\cdot B\in \mathcal{U}\)because\(\mathcal{U}\)is a vector space\(\alpha\in\mathbb{R}\)and\(\beta\in\mathbb{R}\)
And we are looking at\(\alpha\cdot A + \beta \cdot B;\quad\)\(\forall A\in\mathcal{S}\)and\(\forall B\in\mathcal{U}\).
And it's a linear combinations in between elements of\(\mathcal{S}\)and\(\mathcal{U}\).
\(A\in\mathcal{S}\)
and \(B\in\mathcal{U}\)
and we are looking for \(A+B\)
.\[ \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} 2\mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}}+ \mathbb{R} & 2\mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}}+ \mathbb{R} & \color{green}{\mathbb{R}}+ \mathbb{R} & 2\mathbb{R} \\ \end{bmatrix} \]
\[ \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \mathbb{R} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
\[ \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
\(9\)
independent entities for a \(3\times 3\)
matrix.So it has
\(9\)
Basis and \(9\)
Dimensions.We can also see it by a beautiful formula.
(That is\( \text{dim}(\mathcal{S}) + \text{dim}(\mathcal{U}) = \text{dim}(\mathcal{S}\cap\mathcal{U}) + \text{dim}(\mathcal{S} + \mathcal{U})\)
\(6 + 6 = 3 + 9\)
)