More Examples on Matrix Space
Example 1
Consider all\(m\times n\)
matrices, here \(n\)
and \(m\)
are constant (say \(m=5\)
and \(n=17\)
).Let's denote space of all
\(m\times n\)
matrices by \(\mathcal{M}\)
.Now consider a subset of all
\(m\times n\)
matrices,Consider allIs space of all\(m\times n\)matrices with rank\(=1\).
Let's denote space of all\(m\times n\)matrices with rank\(=1\)by\(\mathcal{Q}\).
\(m\times n\)
matrices with rank \(=1\)
\((\mathcal{Q})\)
is a subspace of space of all \(m\times n\)
matrices \((\mathcal{M})?\)
Or say Is
\((\mathcal{Q})\)
a subspace of \((\mathcal{M})?\)
For\((\mathcal{Q})\)to be a subspace, first it had to be a vector space.
So Is
\((\mathcal{Q})\)
a vector space?Space of all\(m\times n\)matrices with rank\(=1\)\((\mathcal{Q})\)do not form a vector space of all\(m\times n\)matrices.
But Why?
Consider two rank\(1\)matrices\(A\in\mathcal{Q}\)and\(B\in\mathcal{Q}\).
For\(\mathcal{Q}\)to be a vector space, linear combination of\(A\)and\(B\)must\(\in\mathcal{Q}\).
Let's consider an example (say\(m=2, n=3\))\(A= \begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \)and\(B= \begin{bmatrix} 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix} \)
Here\(A\)and\(B\)both are rank\(1\)matrices so\(A\in\mathcal{Q}\)and\(B\in\mathcal{Q}\).\(A+B= \begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix} \)\(A\)and\(B\)are rank\(1\)matrices so they\(\in\mathcal{Q}\).
But\(A+B\)has rank =\(2\).\(A+B\)is a linear combination of\(A\)and\(B\)but because\(A+B\)has rank =\(2\Rightarrow\)\(A+B\notin \mathcal{Q}\).
So\(\mathcal{Q}\)is not a vector space.
Example 2
Consider all vectors in\(\mathbb{R}^4\)
Let's denote space of all vectors in
\(\mathbb{R}^4\)
by \(\mathcal{S}\)
.Now consider a subset of all vectors in
\(\mathbb{R}^4\)
Consider all vectors in\(\mathbb{R}^4\)where there elements sum up to\(0\).
for example assume a vector\(\vec{v}\in\mathbb{R}^4\).\(\vec{v}=\begin{bmatrix} \color{red}{v_1\in\mathbb{R}}\\ \color{blue}{v_2\in\mathbb{R}}\\ \color{green}{v_3\in\mathbb{R}}\\ \color{brown}{v_4\in\mathbb{R}}\\ \end{bmatrix}\)And we want\( \color{red}{v_1} + \color{blue}{v_2} + \color{green}{v_3} + \color{brown}{v_4} =0 \)
Let's denote space of all vectors in\(\mathbb{R}^4\)where there elements sum up to\(0\)by\(\mathcal{Q}\).
(So\(\vec{v}\in\mathcal{Q}\))
Is space of all vectors in
\(\mathbb{R}^4\)
where there elements sum up to \(0\)
\((\mathcal{Q})\)
is a subspace of space of all vectors in \(\mathbb{R}^4\)
\((\mathcal{S})?\)
Or say Is
\(\mathcal{Q}\)
a subspace of \(\mathcal{S}?\)
Yes,\(\mathcal{Q}\)a subspace of\(\mathcal{S}\).
But How? Consider vectors in\(\mathbb{R}^4\)where there elements sum up to\(0\),\(\vec{v}\in\mathcal{Q}\)and\(\vec{w}\in\mathcal{Q}\).
For\(\mathcal{Q}\)to be a subspace of\(\mathcal{S}\)linear combination of\(\vec{v}\)and\(\vec{w}\)must\(\in\mathcal{Q}\).\(\vec{v} = \begin{bmatrix} v_1\in\mathbb{R}\\ v_2\in\mathbb{R}\\ v_3\in\mathbb{R}\\ v_4\in\mathbb{R}\\ \end{bmatrix}\),\(\vec{w} = \begin{bmatrix} w_1\in\mathbb{R}\\ w_2\in\mathbb{R}\\ w_3\in\mathbb{R}\\ w_4\in\mathbb{R}\\ \end{bmatrix}\)
There is a constraint on\(\vec{v}\)and\(\vec{w}\), we want elements of\(\vec{v}\)and\(\vec{w}\)sums to\(0\),\[\sum_{v_i\in\vec{v}}v_i=0 \\ \sum_{w_i\in\vec{w}}w_i=0 \\ \]Let's take linear combination of\(\vec{v}\)and\(\vec{w}\)and if every linear combination of\(\vec{v}\)and\(\vec{w}\)\(\in\mathcal{Q}\)then it's a subspace of all vectors in\(\mathbb{R}^4\).\(\alpha\cdot\vec{v} +\beta\cdot\vec{w} = \alpha\cdot \begin{bmatrix} v_1\\ v_2\\ v_3\\ v_4\\ \end{bmatrix} + \beta\cdot \begin{bmatrix} w_1\\ w_2\\ w_3\\ w_4\\ \end{bmatrix} ;\quad\)\(\alpha\in\mathbb{R}, \beta\in\mathbb{R}\)
Say\( \alpha\cdot\vec{v} +\beta\cdot\vec{w} = \vec{r}\)\(\vec{r} = \begin{bmatrix} \alpha\cdot v_1 + \beta\cdot w_1 \\ \alpha\cdot v_2 + \beta\cdot w_2 \\ \alpha\cdot v_3 + \beta\cdot w_3 \\ \alpha\cdot v_4 + \beta\cdot w_4 \\ \end{bmatrix} \)
For\(\mathcal{Q}\)to be a subspace of\(\mathcal{S}\),\(r\)must\(\in\mathcal{Q}\).
And if\(r\in\mathcal{Q}\)then\[\sum_{r_i\in\vec{r}}r_i=0\]Proof:\[\sum_{r_i\in\vec{r}}r_i = \alpha\cdot (v_1 + v_2 + v_3 + v_4) + \beta\cdot (w_1 + w_2 + w_3 + w_4) \]\[\sum_{r_i\in\vec{r}}r_i = \alpha\cdot (0) + \beta\cdot (0)\]\[\sum_{r_i\in\vec{r}}r_i = 0\]So space of all vectors in\(\mathbb{R}^4\)where there elements sum up to\(0\)\((\mathcal{Q})\)is a subspace of space of all vectors in\(\mathbb{R}^4\)\((\mathcal{S})\)