Menu
QuantML.orgQuantML.org
  • Linear Algebra
  • Matrix Space
  • Dim./Basis
  • Subspaces Ops.
  • Examples

    Matrix Space


    Vector Interpretation

    Our Interpretation of vectors is something like this,
    Say we have a vector
    \(\vec{v}\in\mathbb{R}^3\)

    then each element of vector
    \(\vec{v}\)
    represent an unique axis (say
    \(x,y\)
    and
    \(z\)
    ).
    these axis can be anything your salary, your SAT score, your running speed (anything which can be quantify in a number).
    Assume a line passing thrown each element in that vector
    \(\vec{v}\)
    .
    \[\vec{v}=\begin{bmatrix} \color{red}{\bullet}\\ \color{blue}{\bullet}\\ \color{green}{\bullet}\\ \end{bmatrix}\]
    .
    interpret these (red
    \(\bullet\)
    , blue
    \(\bullet\)
    and green
    \(\bullet\)
    ) dots as real line
    \(\in\mathbb{R}^1\)

    Matrix Interpretation

    We can use our interpretation of vectors for matrices,
    Say we have a
    \(m\times n\)
    matrix say
    \(A\in\mathbb{R}^{m\times n}\)

    then each element of our matrix
    \(A\)
    represent an unique axis (say
    \(u,v,w,\cdots\)
    ).
    These axis can be anything your salary, your SAT score, your average running speed, average temperature in past 20 days, (anything which can be quantify in a number).
    Assume a line passing thrown each element in this matrix
    \(A\)
    .
    \[A=\begin{bmatrix} \color{red}{\bullet} & \color{brown}{\bullet} \\ \color{green}{\bullet} & \color{blue}{\bullet} \\ \end{bmatrix} \]
    interpret these (red
    \(\bullet\)
    , blue
    \(\bullet\)
    , green
    \(\bullet\)
    and brown
    \(\bullet\)
    ) dots as real line
    \(\in\mathbb{R}^1\)

    Vector interpretation of a Matrix

    We can interpret matrices as vectors.
    Say we have a
    \(2\times 2\)
    matrix say
    \(A\in\mathbb{R}^{2\times 2}\)

    \[A=\begin{bmatrix} \color{red}{\bullet} & \color{brown}{\bullet} \\ \color{green}{\bullet} & \color{blue}{\bullet} \\ \end{bmatrix} \]
    We can interpret it as vector say
    \(\vec{v}\in\mathbb{R}^4\)
    as,
    \[\vec{v}=\begin{bmatrix} \color{red}{\bullet}\\ \color{brown}{\bullet}\\ \color{green}{\bullet}\\ \color{blue}{\bullet}\\ \end{bmatrix}\]
    .
    So we can see that our matrices are the vectors.

    Matrix space

    Think of all
    \(3\times 3\)
    matrices, there are not any limitation to elements, they can be anything, there are
    \(\infty\)
    of them.
    These
    \(3\times 3\)
    matrices can we written as vectors
    \(\vec{v}\in\mathbb{R}^9\)
  • We can add those matrices, and if we add them we got another
    \(3\times 3\)
    matrix.
  • We can multiply matrices by a scaler, and if we multiply a scaler to a
    \(3\times 3\)
    matrix we get another
    \(3\times 3\)
    matrix.
  • We can take there linear combinations and the resultant matrix will still be a
    \(3\times 3\)
    matrix
  • So the space of all
    \(3\times 3\)
    matrices is a vector space
    Let's denote this space of all
    \(3\times 3\)
    matrices as
    \(\mathcal{M}\)
    .
    Now let's see sub spaces of
    \(\mathcal{M}\)
    .

    Lower Triangular

    All
    \(3\times 3\)
    Lower Triangular matrices
    \(\subset\)
    All
    \(3\times 3\)
    matrices.
    Is the space of all
    \(3\times 3\)
    Lower Triangular matrices is a subspace of all
    \(3\times 3\)
    matrices?
    We know that All
    \(3\times 3\)
    Lower Triangular matrices
    \(\subset\)
    All
    \(3\times 3\)
    matrices, then,
    Space of all Lower Triangular matrices is a subspace of all
    \(3\times 3\)
    matrices if,
  • All Lower Triangular
    \(3\times 3\)
    matrices form a vector space?
  • Do all Lower Triangular
    \(3\times 3\)
    matrices form a vector space?.

  • We can add two
    \(3\times 3\)
    Lower Triangular matrices, we got another
    \(3\times 3\)
    Lower Triangular matrix.
  • \[ \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
  • We can multiply a
    \(3\times 3\)
    Lower Triangular matrices by a scaler, we get another
    \(3\times 3\)
    Lower Triangular matrix.
  • \[ C\cdot \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
  • We can take there linear combinations and the resultant matrix will still be a
    \(3\times 3\)
    matrix
  • \[\alpha\cdot \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} + \beta\cdot \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
    So collectively we can say that all
    \(3\times 3\)
    Lower Triangular matrices forms a vector space.
    So
    The space all
    \(3\times 3\)
    Lower Triangular matrices is a subspace of all
    \(3\times 3\)
    matrices .

    Symmetric Matrix

    All
    \(3\times 3\)
    Symmetric matrices
    \(\subset\)
    All
    \(3\times 3\)
    matrices.
    Is the space of all
    \(3\times 3\)
    Symmetric matrices is a subspace of all
    \(3\times 3\)
    matrices?
    We know that All
    \(3\times 3\)
    Symmetric matrices
    \(\subset\)
    All
    \(3\times 3\)
    matrices, then,
    Space of all Symmetric matrices is a subspace of all
    \(3\times 3\)
    matrices if,
  • All Symmetric
    \(3\times 3\)
    matrices form a vector space?

  • Do all Symmetric
    \(3\times 3\)
    matrices form a vector space?.

  • We can add two
    \(3\times 3\)
    Symmetric matrices, we got another
    \(3\times 3\)
    Symmetric matrix.
  • \[ \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & \color{brown}{\mathbb{R}} & \color{magenta}{\mathbb{R}} \\ \color{brown}{\mathbb{R}} & \mathbb{R} & \color{orange}{\mathbb{R}} \\ \color{magenta}{\mathbb{R}} & \color{orange}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} 2\mathbb{R} & \color{red}{\mathbb{R}}+\color{brown}{\mathbb{R}} & \color{blue}{\mathbb{R}}+\color{magenta}{\mathbb{R}} \\ \color{red}{\mathbb{R}}+\color{brown}{\mathbb{R}} & 2\mathbb{R} & \color{green}{\mathbb{R}}+\color{orange}{\mathbb{R}} \\ \color{blue}{\mathbb{R}}+\color{magenta}{\mathbb{R}} & \color{green}{\mathbb{R}}+\color{orange}{\mathbb{R}} & 2\mathbb{R} \\ \end{bmatrix} \]
  • We can multiply a
    \(3\times 3\)
    Symmetric matrices by a scaler, we get another
    \(3\times 3\)
    Symmetric matrix.
  • \[ C\cdot \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} C\cdot\mathbb{R} & \color{red}{C\cdot\mathbb{R}} & \color{blue}{C\cdot\mathbb{R}} \\ \color{red}{C\cdot\mathbb{R}} & C\cdot\mathbb{R} & \color{green}{C\cdot\mathbb{R}} \\ \color{blue}{C\cdot\mathbb{R}} & \color{green}{C\cdot\mathbb{R}} & C\cdot\mathbb{R} \\ \end{bmatrix} \]
  • We can take there linear combinations and the resultant matrix will still be a
    \(3\times 3\)
    matrix
  • \[\alpha\cdot \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \beta\cdot \begin{bmatrix} \mathbb{R} & \color{brown}{\mathbb{R}} & \color{magenta}{\mathbb{R}} \\ \color{brown}{\mathbb{R}} & \mathbb{R} & \color{orange}{\mathbb{R}} \\ \color{magenta}{\mathbb{R}} & \color{orange}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \alpha\cdot\mathbb{R} + \beta\cdot\mathbb{R} & \color{red}{\alpha\cdot\mathbb{R}}+\color{brown}{\beta\cdot\mathbb{R}} & \color{blue}{\alpha\cdot\mathbb{R}}+\color{magenta}{\beta\cdot\mathbb{R}} \\ \color{red}{\alpha\cdot\mathbb{R}}+\color{brown}{\beta\cdot\mathbb{R}} & \alpha\cdot\mathbb{R} + \beta\cdot\mathbb{R} & \color{green}{\alpha\cdot\mathbb{R}}+\color{orange}{\beta\cdot\mathbb{R}} \\ \color{blue}{\alpha\cdot\mathbb{R}}+\color{magenta}{\beta\cdot\mathbb{R}} & \color{green}{\alpha\cdot\mathbb{R}}+\color{orange}{\beta\cdot\mathbb{R}} & \alpha\cdot\mathbb{R} + \beta\cdot\mathbb{R} \\ \end{bmatrix} \]
    So collectively we can say that all
    \(3\times 3\)
    Symmetric matrices forms a vector space.
    So
    The space all
    \(3\times 3\)
    Symmetric matrices is a subspace of all
    \(3\times 3\)
    matrices .
    Similarly The space all
    \(3\times 3\)
    Diagonal matrices is a subspace of all
    \(3\times 3\)
    matrices .