Matrix Space
Vector Interpretation
Our Interpretation of vectors is something like this,Say we have a vector\(\vec{v}\in\mathbb{R}^3\)
then each element of vector\(\vec{v}\)represent an unique axis (say\(x,y\)and\(z\)).
these axis can be anything your salary, your SAT score, your running speed (anything which can be quantify in a number).
Assume a line passing thrown each element in that vector\(\vec{v}\).\[\vec{v}=\begin{bmatrix} \color{red}{\bullet}\\ \color{blue}{\bullet}\\ \color{green}{\bullet}\\ \end{bmatrix}\].
interpret these (red\(\bullet\), blue\(\bullet\)and green\(\bullet\)) dots as real line\(\in\mathbb{R}^1\)
Matrix Interpretation
We can use our interpretation of vectors for matrices,Say we have a\(m\times n\)matrix say\(A\in\mathbb{R}^{m\times n}\)
then each element of our matrix\(A\)represent an unique axis (say\(u,v,w,\cdots\)).
These axis can be anything your salary, your SAT score, your average running speed, average temperature in past 20 days, (anything which can be quantify in a number).
Assume a line passing thrown each element in this matrix\(A\).interpret these (red\[A=\begin{bmatrix} \color{red}{\bullet} & \color{brown}{\bullet} \\ \color{green}{\bullet} & \color{blue}{\bullet} \\ \end{bmatrix} \]\(\bullet\), blue\(\bullet\), green\(\bullet\)and brown\(\bullet\)) dots as real line\(\in\mathbb{R}^1\)
Vector interpretation of a Matrix
We can interpret matrices as vectors.Say we have aSo we can see that our matrices are the vectors.\(2\times 2\)matrix say\(A\in\mathbb{R}^{2\times 2}\)We can interpret it as vector say\[A=\begin{bmatrix} \color{red}{\bullet} & \color{brown}{\bullet} \\ \color{green}{\bullet} & \color{blue}{\bullet} \\ \end{bmatrix} \]\(\vec{v}\in\mathbb{R}^4\)as,\[\vec{v}=\begin{bmatrix} \color{red}{\bullet}\\ \color{brown}{\bullet}\\ \color{green}{\bullet}\\ \color{blue}{\bullet}\\ \end{bmatrix}\].
Matrix space
Think of all\(3\times 3\)
matrices, there are not any limitation to elements, they can be anything, there are \(\infty\)
of them.These\(3\times 3\)matrices can we written as vectors\(\vec{v}\in\mathbb{R}^9\)
\(3\times 3\)
matrix.\(3\times 3\)
matrix we get another \(3\times 3\)
matrix.\(3\times 3\)
matrixSo the space of allLet's denote this space of all\(3\times 3\)matrices is a vector space
\(3\times 3\)
matrices as \(\mathcal{M}\)
.Now let's see sub spaces of
\(\mathcal{M}\)
.Lower Triangular
All\(3\times 3\)
Lower Triangular matrices \(\subset\)
All \(3\times 3\)
matrices.Is the space of all
\(3\times 3\)
Lower Triangular matrices is a subspace of all \(3\times 3\)
matrices?We know that AllDo all Lower Triangular\(3\times 3\)Lower Triangular matrices\(\subset\)All\(3\times 3\)matrices, then,
Space of all Lower Triangular matrices is a subspace of all\(3\times 3\)matrices if,All Lower Triangular \(3\times 3\)matrices form a vector space?
\(3\times 3\)
matrices form a vector space?.\(3\times 3\)
Lower Triangular matrices, we got another \(3\times 3\)
Lower Triangular matrix.\[ \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
\(3\times 3\)
Lower Triangular matrices by a scaler, we get another \(3\times 3\)
Lower Triangular matrix.\[ C\cdot \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
\(3\times 3\)
matrixSo collectively we can say that all\[\alpha\cdot \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} + \beta\cdot \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} \]
\(3\times 3\)
Lower Triangular matrices forms a vector space.So
The space all\(3\times 3\)Lower Triangular matrices is a subspace of all\(3\times 3\)matrices .
Symmetric Matrix
All\(3\times 3\)
Symmetric matrices \(\subset\)
All \(3\times 3\)
matrices.Is the space of all
\(3\times 3\)
Symmetric matrices is a subspace of all \(3\times 3\)
matrices?We know that All\(3\times 3\)Symmetric matrices\(\subset\)All\(3\times 3\)matrices, then,
Space of all Symmetric matrices is a subspace of all\(3\times 3\)matrices if,All Symmetric \(3\times 3\)matrices form a vector space?
Do all Symmetric
\(3\times 3\)
matrices form a vector space?.\(3\times 3\)
Symmetric matrices, we got another \(3\times 3\)
Symmetric matrix.\[ \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & \color{brown}{\mathbb{R}} & \color{magenta}{\mathbb{R}} \\ \color{brown}{\mathbb{R}} & \mathbb{R} & \color{orange}{\mathbb{R}} \\ \color{magenta}{\mathbb{R}} & \color{orange}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} 2\mathbb{R} & \color{red}{\mathbb{R}}+\color{brown}{\mathbb{R}} & \color{blue}{\mathbb{R}}+\color{magenta}{\mathbb{R}} \\ \color{red}{\mathbb{R}}+\color{brown}{\mathbb{R}} & 2\mathbb{R} & \color{green}{\mathbb{R}}+\color{orange}{\mathbb{R}} \\ \color{blue}{\mathbb{R}}+\color{magenta}{\mathbb{R}} & \color{green}{\mathbb{R}}+\color{orange}{\mathbb{R}} & 2\mathbb{R} \\ \end{bmatrix} \]
\(3\times 3\)
Symmetric matrices by a scaler, we get another \(3\times 3\)
Symmetric matrix.\[ C\cdot \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} C\cdot\mathbb{R} & \color{red}{C\cdot\mathbb{R}} & \color{blue}{C\cdot\mathbb{R}} \\ \color{red}{C\cdot\mathbb{R}} & C\cdot\mathbb{R} & \color{green}{C\cdot\mathbb{R}} \\ \color{blue}{C\cdot\mathbb{R}} & \color{green}{C\cdot\mathbb{R}} & C\cdot\mathbb{R} \\ \end{bmatrix} \]
\(3\times 3\)
matrixSo collectively we can say that all\[\alpha\cdot \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \beta\cdot \begin{bmatrix} \mathbb{R} & \color{brown}{\mathbb{R}} & \color{magenta}{\mathbb{R}} \\ \color{brown}{\mathbb{R}} & \mathbb{R} & \color{orange}{\mathbb{R}} \\ \color{magenta}{\mathbb{R}} & \color{orange}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \alpha\cdot\mathbb{R} + \beta\cdot\mathbb{R} & \color{red}{\alpha\cdot\mathbb{R}}+\color{brown}{\beta\cdot\mathbb{R}} & \color{blue}{\alpha\cdot\mathbb{R}}+\color{magenta}{\beta\cdot\mathbb{R}} \\ \color{red}{\alpha\cdot\mathbb{R}}+\color{brown}{\beta\cdot\mathbb{R}} & \alpha\cdot\mathbb{R} + \beta\cdot\mathbb{R} & \color{green}{\alpha\cdot\mathbb{R}}+\color{orange}{\beta\cdot\mathbb{R}} \\ \color{blue}{\alpha\cdot\mathbb{R}}+\color{magenta}{\beta\cdot\mathbb{R}} & \color{green}{\alpha\cdot\mathbb{R}}+\color{orange}{\beta\cdot\mathbb{R}} & \alpha\cdot\mathbb{R} + \beta\cdot\mathbb{R} \\ \end{bmatrix} \]
\(3\times 3\)
Symmetric matrices forms a vector space.So
The space all\(3\times 3\)Symmetric matrices is a subspace of all\(3\times 3\)matrices .
Similarly The space all\(3\times 3\)Diagonal matrices is a subspace of all\(3\times 3\)matrices .