Markov Matrix
A\(n\times n\)
matrix whose elements are non-negative and every column vector sums to \(1\)
is known as Markov Matrix(a.k.a. stochastic matrix).Say
\[A=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix}\]
So, \(a_{ij}\geq 0;\quad\forall i,j\in\{1,2,\cdots,n\}\)
\(\sum_{i=0}^{n}a_{ij}=1\quad\forall j\in\{1,2,\cdots,n\}\)
\(\lambda_1=1\)
Markov matrix always have one of the eigenvaluesProof:\(=1\).
\(A=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix}\)\(A-1\mathcal{I}=\begin{bmatrix} a_{11}-1 & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22}-1 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}-1 \\ \end{bmatrix}\)
Now we apply\(R_n \leftarrow R_1 + R_2 + \cdots + R_n\)\(A-\mathcal{I}=\begin{bmatrix} a_{11}-1 & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22}-1 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=0}^{n}a_{i1} -1 & \sum_{i=0}^{n}a_{i2} -1 & \cdots & \sum_{i=0}^{n}a_{in} -1 \\ \end{bmatrix}\)
And as we know that\(\sum_{i=0}^{n}a_{ij}=1\quad\forall j\in\{1,2,\cdots,n\}\)So now we can see that\(A-\mathcal{I}=\begin{bmatrix} a_{11}-1 & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22}-1 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \\ \end{bmatrix}\)\(\text{det}(A-\mathcal{I})=0\)
So indeed\(\lambda=1\).
Example of Markov Matrices
Assume that we have two cities\(A\)
and \(B\)
and at the end of the year we calculate the \(A\)
, we denote it by \(p_{a}\)
\(B\)
, we denote it by \(p_{b}\)
\(A\)
to \(B\)
, we denote it by \(p_{ab}\)
\(B\)
to \(A\)
, we denote it by \(p_{ba}\)
\(M\)
).\[\begin{matrix} & \text{Moved to } A & \text{Moved to } B \\ \text{From } A & p_{a} & p_{ba}\\ \text{From } B & p_{ab} & p_{b}\\ \end{matrix}\]
\[M=\begin{bmatrix} p_{a} & p_{ba}\\ p_{ab} & p_{b}\\ \end{bmatrix}\]
\(p_a + p_{ab}=1\)
(here we took all peoples in city \(A\)
)\(p_b + p_{ba}=1\)
(here we took all peoples in city \(B\)
)And proportions are positive and cannot be greater then
\(1\)
So it is a Markov Matrix
Now say that at time
\(t=k\)
.\(A\)
are \(u_A\)
\(B\)
are \(u_B\)
\(t=k+1\)
we can say,\[\begin{bmatrix} u_{A}\\u_{B}\\ \end{bmatrix}_{t=k+1}=\begin{bmatrix} p_{a} & p_{ba}\\ p_{ab} & p_{b}\\ \end{bmatrix}\begin{bmatrix} u_{A}\\u_{B}\\ \end{bmatrix}_{t=k}\]
Say that we know \(u_{t=0}\)
and we want to find \(u_{t=100}\)
then we have to compute \(M^{100}\)
but for large \(M\)
it's impractical to compute.Now say that eigenvalues of
\(M\)
is \(\lambda_1\)
and \(\lambda_2\)
and eigenvectos of \(M\)
is \(x_1\)
and \(x_2\)
So,
\[ \begin{matrix} \displaystyle \vec{u}_{t=k}=c_1\lambda_1^k\vec{u}_{t=0} + c_2\lambda_2^k\vec{u}_{t=0} \end{matrix} \]
Expansion with Orthogonal basis
Say that we are in\(n\)
dimensional space and \(\vec{q}_1, \vec{q}_2, \cdots, \vec{q}_n\)
are the basis for that \(n\)
dimensional space.Here all
\(\vec{q}_1, \vec{q}_2, \cdots, \vec{q}_n\)
are orthogonalWe can express any vector in this
\(n\)
dimensional space as the linear combination of basis vectors.Assume a vector
\(\vec{v}\in\mathbb{R}^n\)
in this \(n\)
dimensional space.we can express
\(\vec{v}\)
as,\(\vec{v}=x_1\vec{q}_1 + x_2\vec{q}_2 + \cdots + x_n\vec{q}_n\)
Ok we can express
\(\vec{v}\)
as linear combination of basis vectors but we are interested in these \(x_1, x_2, \cdots, x_n\)
.How can we compute
\(x_1, x_2, \cdots, x_n\)
?First let's see how can we get
\(x_1\)
?IDEA: All
\(\vec{q}_1, \vec{q}_2, \cdots, \vec{q}_n\)
are orthogonal so \(\vec{q}_i^T\vec{q}_j=0;\quad \forall i\neq j\)
so take dot product w.r.t.
\(x_1\)
.\(\vec{v}^T\vec{q}_1=x_1\underbrace{\vec{q}_1^T\vec{q}_1}_{=1} + x_2\underbrace{\vec{q}_2^T\vec{q}_1}_{=0} + \cdots + x_n\underbrace{\vec{q}_n^T\vec{q}_1}_{=0}\)
\(\Rightarrow x_1=\vec{v}^T\vec{q}_1\)
\[ \begin{matrix} \displaystyle x_i=\vec{v}^T\vec{q}_i;\quad\forall i\in\{1,2,\cdots, n\} \end{matrix} \]
\(\begin{bmatrix} \vdots & \vdots & & \vdots \\ \vec{q}_{1} & \vec{q}_{2} & \cdots & \vec{q}_{n} \\ \vdots & \vdots & & \vdots \\ \end{bmatrix}=Q\)
and \(\vec{x}=\begin{bmatrix} x_1\\ \vdots \\x_n\\ \end{bmatrix}\)
We can also write it in matrix form,
\[\begin{bmatrix} \vdots & \vdots & & \vdots \\ \vec{q}_{1} & \vec{q}_{2} & \cdots & \vec{q}_{n} \\ \vdots & \vdots & & \vdots \\ \end{bmatrix} \begin{bmatrix} x_1\\ \vdots \\x_n\\ \end{bmatrix} = \vec{v} \]
\(\Rightarrow Q\vec{x}=\vec{v}\)
\(\Rightarrow \underbrace{Q^TQ}_{\mathcal{I}}\vec{x}=Q^T\vec{v}\)
\[ \begin{matrix} \displaystyle \vec{x}=Q^T\vec{v} \end{matrix} \]
Fourier Series
\[f(x)=a_0 1+a_1\cos(x)+b_1\sin(x)+a_2\cos(2x)+b_2\sin(2x)+\cdots\]
Here our space is
\(\infty\)
dimensional- Say \(\vec{v}= \begin{bmatrix} v_1\\ \vdots \\v_n\\ \end{bmatrix}\)and\(\vec{u}= \begin{bmatrix} u_1\\ \vdots \\u_n\\ \end{bmatrix}\)\(\vec{v}\cdot\vec{u}=v_1u_1 + v_2u_2 + \cdots + v_1u_n \)
- Vectors have some set of values like \(\vec{v}= \begin{bmatrix} v_1\\ \vdots \\v_n\\ \end{bmatrix}\).
But a function has a range of values like for\(\cos(x)\)range is\([0,2\pi]\).
And a dot product of two functions say\(f\)and\(g\)with interval\([0,2\pi]\)is defined as.\[ \begin{matrix} f\cdot g=\int_{0}^{2\pi}f(x)g(x)dx \end{matrix} \]
\(1,\cos(x),\sin(x),\cos(2x),\sin(2x),\cdots\)
\(\cos\)
and \(\sin\)
are periodic function with period of \([0,2\pi]\)
, so \(0\leq x\leq 2\pi\)
So we have
\(\infty\)
orthogonal basis.Now we want to find
\(a_0,a_1,b_1,a_2,b_2,\cdots\)
First let's see how to find
\(a_1\)
?\(f(x)=a_0 1+a_1\cos(x)+b_1\sin(x)+a_2\cos(2x)+b_2\sin(2x)+\cdots\)
IDEA: take dot product with function with
\(a_1\)
\(f(x)\cdot\cos(x) =a_0 1\cdot\cos(x) +a_1\cos(x)\cdot\cos(x) +b_1\sin(x)\cdot\cos(x) +a_2\cos(2x)\cdot\cos(x) +b_2\sin(2x)\cdot\cos(x) +\cdots\)
\(\Rightarrow \int_{0}^{2\pi}f(x)\cos(x) =\underbrace{\int_{0}^{2\pi}a_0 1\cos(x)}_{=0} + \int_{0}^{2\pi}a_1\cos(x)\cos(x) + \underbrace{\int_{0}^{2\pi}b_1\sin(x)\cos(x)}_{=0} + \underbrace{\int_{0}^{2\pi}a_2\cos(2x)\cos(x)}_{=0} + \underbrace{\int_{0}^{2\pi}b_2\sin(2x)\cos(x)}_{=0} +\cdots\)
\(\Rightarrow \int_{0}^{2\pi}f(x)\cos(x) =\int_{0}^{2\pi}a_1\cos(x)\cos(x)\)
\(\Rightarrow \int_{0}^{2\pi}f(x)\cos(x) =a_1\pi\)
\(\Rightarrow \int_{0}^{2\pi}f(x)\cos(x) =a_1\pi\)
So,
\[ \begin{matrix} a_1=\frac{1}{\pi}\int_{0}^{2\pi}f(x)\cos(x) \end{matrix} \]
\(a_i\)
's